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A subscale wind tunnel test program for Orion’s conical ribbon drogue parachute is 
under development. The desired goals of the program are to quantify aerodynamic 
performance of the parachute in the wake of the entry vehicle, including understanding of 
the coupling of the parachute and command module dynamics, and an improved 
understanding of the load distribution within the textile elements of the parachute. The test 
program is ten percent of full scale conducted in a 3x2.1 m (10x7 ft) closed loop subsonic 
wind tunnel.  The subscale test program is uniquely suited to probing the aerodynamic and 
structural environment in both a quantitative and qualitative manner. Non-intrusive 
diagnostics, including Particle Image Velocimetry for wake velocity surveys, high speed 
pressure transducers for canopy pressure distribution, and a high speed photogrammetric 
reconstruction, will be used to quantify the parachute’s performance.  

Nomenclature 
Do = Parachute nominal diameter 
d = Command module maximum diameter 
x/d = Non-dimensional trailing distance 
CD = Drag coefficient 
q = Dynamic Pressure 
Re = Reynolds number 
 = Angle of attack 
Tinf = Free stream temperature 
 = Density 
 = Viscosity 
Tinf = Free stream temperature 
So = Parachute nominal area 
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Table 2. Examples of subscale parachute tests. 

Parameter Viking Huygens Army MER MSL 

Type DGB DGB,CR Cross, Quarter Spherical DGB DGB 
Scale (%) 10 ---  --- 10 3 
Do (m) 1.6  1.6  0.3 1.6 0.8 
Mach 0.1-2.6 0.1-1.5 <0.8 0.3-0.5 2-2.5 

q (kPa) 4.7 4-6  0.015-0.2 1.2 4-19 

II. Wind Tunnel Testing Considerations  

A. Parachute performance 
The parachute drag coefficient can be affected by the presence of a blunt-body wake. Knacke compiled the drag 

coefficient (CD) loss for several subsonic parachute payload combinations as a function of the payload diameter d 
and trailing distance x. It exhibits a logarithmic decay with x/d 7. 
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Similarly, the parachute dynamic stability and inflation may be affected by its interaction with the wake core 

resulting in failure to inflate, parachute collapse, unsteadiness, and other undesirable motions. An example would be 
the CPAS Cluster 2 test, where insufficient trailing distance, a result of capsule dynamics during the flight, likely led 
to the programmer chute collapse8.  

B. Model Validation 
Advances in computational tools and power allow parachute systems to be modeled by computational fluid 

dynamic (CFD), fluid structure interaction (FSI), and six-degree of freedom (6DOF) flight mechanics simulations. 
Collection of spatially and temporally resolved flow-field data can be used to validate these simulations, enhancing 
their fidelity and usefulness in the design process. Time resolved drag and pressure distribution measurements 
provide unique insight into textile design drivers, as well as validating membrane solvers and full FSI simulations. 

C. Wind Tunnel Test Scaling  
Appropriate scaling is a critical part of all wind tunnel tests. Scaling has  aerodynamic and fabrication 

implications. A inappropriate scaling of the test article can lead to a change in the magnitude of the effective length, 
i.e. a Reynolds number effect. Similarly, an inappropriately scaled test can lead to interaction of the test facility 
walls which can alter pressure and velocity distribution. Equally important is flow quality, namely steadiness and 
angularity which can introduce aerodynamic behavior non-representative of the flight application. From a 
fabrication perspective, scaling down a parachute can lead to changes in its inflated shape, stiffness, and porosity, 
which must be accounted for. Therefore, test scaling, fabrication, and facility selection must match the specific goals 
of the test. 

 
1. Reynolds Number 

 
Representing the wake accurately is essential for capturing the velocity deficit and recovery length, energy 

content, and coupling to the parachute flow field. All of these parameters have an effect on parachute pressure 
distribution and drag. The Reynolds (Re) number is the measure of the ratio of inertial to viscous forces in the flow. 
Re defines the flow regime (laminar or turbulent), which is particularly important for the blunt-body wake. 

		 2  

The Orion capsule or command module (CM) is based on a large radius spherical heatshield with a conical aft 
body, very similar to Apollo9. Its drag coefficient is a function of Re. The flow is known to be laminar for 
Re<1.5x106, therefore, to accurately capture the wake’s effect on the parachute, a subscale test must exceed this 
value.  
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In addition to decreasing steady state drag, aerodynamic interactions with the payload may also create transients 
and load overshoots that need to be factored into the textile sizing. Without a quantification of these transients, the 
parachute designer has little choice but to add additional qualitative margin. The result is a sizing that is not mass 
optimized, and perhaps insufficient. Quantifying the true flight environment ultimately reduces risk in the 
development phase. Similarly, a mature basis for the mass allocation reduces the potential for future mass and 
volume growth, critical to entry and recovery systems. 
 

V. Conclusion 
A subscale test program to measure the Orion drogue performance is underway. The program will measure the 

spatially and temporally resolved velocity field upstream of the parachute with PIV, pressure distribution inside of 
the canopy with transducers, parachute dynamics with high speed video, and time resolved drag with a load cell. A 
test facility and diagnostics suite have been selected to this end. A quantitative approach to the test design that 
utilizes CFD to design the experiment has been implemented.  Simulations of the test configuration have been 
performed to provide load estimates for tunnel support hardware and an acceptable level of blockage. Ten percent 
scale test articles are under fabrication using a novel laser cutting approach to provide maximize similarity to the 
full-scale inflated shape and geometric porosity. A test matrix that explores trailing distance, Re, and CM angle of 
attack will provide new insight into the CPAS drogue performance. 
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